
ColBERT-serve: Efficient Multi-Stage
Memory-Mapped Scoring

Kaili Huang�1†, Thejas Venkatesh2†, Uma Dingankar3†‡, Antonio Mallia4,
Daniel Campos5, Jian Jiao1, Christopher Potts6, Matei Zaharia7, Kwabena

Boahen6, Omar Khattab6, Saarthak Sarup6, and Keshav Santhanam6

1 Microsoft, Redmond, WA, USA
kaili.khuang@gmail.com, jian.jiao@microsoft.com

2 Samaya AI, Mountain View, CA, USA
thejas@stanford.edu

3 Foundry, Palo Alto, CA, USA
uma@mlfoundry.com

4 Pinecone, New York, NY, USA
me@antoniomallia.it

5 Snowflake, New York, NY, USA
daniel.campos@snowflake.com

6 Stanford University, Stanford, CA, USA
{cgpotts, boahen, okhattab, ssarup, keshav2}@stanford.edu

7 UC Berkeley, Berkeley, CA, USA
matei@berkeley.edu

Abstract. We study serving retrieval models, particularly late interac-
tion retrievers like ColBERT, to many concurrent users at once and under
a small budget, in which the index may not fit in memory. We present
ColBERT-serve, a serving system that applies a memory-mapping strat-
egy to the ColBERT index, reducing RAM usage by 90% and permitting
its deployment on cheap servers, and incorporates a multi-stage archi-
tecture with hybrid scoring, reducing ColBERT’s query latency and sup-
porting many concurrent queries in parallel.

Keywords: Information Retrieval · ColBERT · Efficiency

1 Introduction

Multi-vector late-interaction retrievers like ColBERT [10] and ColPali [5] have
demonstrated state-of-the-art quality and superior generalization [31] while main-
taining low latency, but despite major progress in compressing their embeddings
[28,8], hosting a ColBERT index of Wikipedia (20M passages) via PLAID [27]
demands nearly 100GB of RAM. This poses a challenge for serving such models
on cheap servers with little RAM, especially if we need to serve many concur-
rent users with low latency. Unfortunately, cost, latency, and quality tradeoffs

†K. Huang, T. Venkatesh, and U. Dingankar contributed equally to this work.
‡Work by U. Dingankar was done while at Stanford.



2 K. Huang et al.

in such a high-concurrency, low-memory regime are rarely considered jointly in
the existing neural IR literature.

We tackle this with the following contributions. First, we present a method-
ology and benchmark for evaluating the concurrent serving of neural IR mod-
els under different traffic workloads and memory budgets. Second, we introduce
ColBERT-serve,1 which (1) incorporates a new memory-mapping architecture,
permitting the bulk of ColBERTv2’s index to reside on disk, (2) minimizes ac-
cess to this index via a multi-stage retrieval process, (3) handles concurrent
requests in parallel with low latency and scales gracefully under load by adapt-
ing PISA and ColBERTv2, and (4) preserves the quality of full ColBERTv2
retrieval through a hybrid scoring technique. Third, we conduct an empirical
evaluation that demonstrates the first ColBERT serving system that can serve
up to 4 queries per second on a server with as little as a few GBs of
RAM (90% reduction in RAM usage for loading the model compared to the full
ColBERTv2) for massive collections while preserving quality.

2 Related Work

Memory-mapping is a technique for accessing data from disk while only material-
izing accessed portions in memory on demand. It is used in approximate nearest
neighbor search [9,4], database systems [11], and concurrently with our work also
in neural IR [30]. Memory-mapped indexes pose the challenge of minimizing the
latency overhead incurred by page misses. Whereas [30] built a prefetcher to
reduce the impact of SSD latencies, we seek to reduce the number of accesses to
disk directly via multi-stage retrieval. Much existing work has studied improving
the latency or memory footprint of ColBERT-like models [28,27,29,17,25,15,6]
or the quality-cost tradeoff [10,21,19,3] of using ColBERT to re-rank results pro-
duced by simpler systems like BM25 [26] or LADR [12]. This general strategy is
generally known to lead to improved latency but comes at the cost of a reduction
in MRR and recall. We build a concurrent serving system for ColBERTv2 that
permits the index to mostly reside on disk without sacrificing retrieval quality
or latency under high traffic. We achieve this by leveraging a combination of
memory-mapping and a multi-stage retrieval approach that utilizes scores from
both the candidate generation and the re-ranking steps. This hybrid scoring
method leverages the strengths of both stages, resulting in performance that
can surpass fully in-memory ColBERTv2 retrieval.

3 ColBERT-serve

Memory-Mapped Storage To deploy ColBERTv2 on memory-constrained
machines, we introduce memory-mapping into the ColBERT implementation,
specifically for the tensors encoding the compressed ColBERTv2 embeddings.

1 https://github.com/stanford-futuredata/colbert-serve

https://github.com/stanford-futuredata/colbert-serve


ColBERT-serve: Efficient Multi-Stage Memory-Mapped Scoring 3

This bypasses loading the index upfront and instead enables the operating sys-
tem to manage limited memory resources, by bringing only accessed data into
memory at the page granularity and evicting pages when RAM is insufficient.
This reduces the RAM requirements by over 90%.

Concurrent Requests We build a server-client architecture for deploy-
ment as well as experimentation for ColBERTv2. To this end, we improve Col-
BERTv2’s multithreading compatibility by releasing Python’s Global Interpreter
Lock while invoking all underlying functionality of ColBERTv2 implemented
as C++ extensions.2 Without this, multithreading for ColBERTv2 was pro-
hibitively expensive as each query would block when extensions are invoked, so
concurrency was only possible by launching multiple processes, which—without
memory mapping—would scale memory consumption linearly with the number
of processes. With support for memory mapping, we tune the number of threads
used to serve each ColBERTv2 request and find that though multithreading
improves performance under low load, single-threaded performance dominates
under higher loads; hence, we use only a single thread for all our experiments. In
addition, we adapt the PISA [22] engine for this setting to support our server-
client architecture with the multi-stage retrieval discussed next. We leave the
comparison with more recent dynamic pruning strategies specifically designed
for learned sparse retrieval models [24,20] as future work.

Multi-Stage Retrieval Memory-mapping introduces a key challenge: due
to the latency incurred by page misses, searching over MS MARCO with a
memory-mapped index is approximately 2× slower than an in-memory index.
We tackle this via a multi-stage ranking architecture, in which SPLADEv2 [7],
a learned sparse model [18,32,33,2], serves as the first-stage retriever to mini-
mize the number of documents we need to access from the ColBERT index. As
a baseline,3 we use the standard ColBERTv2 with PLAID [27] with a machine
capable of fitting the entire index in memory. Then, we implement and study
four different systems: (1) MMAP ColBERTv2, in which we apply memory-
mapping to the end-to-end process of PLAID; (2) SPLADEv2 w/ PISA, in
which SPLADEv2 expands queries and the PISA engine performs efficient re-
trieval [22]; (3) MMAP Rerank, in which SPLADEv2 generates top-200 candi-
dates per query and MMAP ColBERTv2 re-ranks them; and MMAP Hybrid,
in which SPLADEv2’s top-200 results are re-ranked via a linear interpolation be-
tween SPLADEv2 and MMAP ColBERTv2. For a given query Q and document
D, the hybrid score is given by:

Shybrid(D,Q) = αN(SSPLADE(D,Q)) + (1− α)N(SColBERT(D,Q))

where S(∗, ∗) is the score function, N(∗) is the normalization function, and α
is a coefficient between 0 and 1. SPLADEv2 and ColBERTv2 produce scores of
drastically different distributions, a likely source of quality for hybrid scoring.
2 This optimization was implemented in May 2024. Since then, Python 3.13 has in-

troduced experimental support for a GIL-free mode.
3 We build on code from https://github.com/stanford-futuredata/ColBERT, https:

//github.com/naver/splade, and https://github.com/pisa-engine/pisa.

https://github.com/stanford-futuredata/ColBERT
https://github.com/naver/splade
https://github.com/naver/splade
https://github.com/pisa-engine/pisa


4 K. Huang et al.

To combine these scores, we explored (1) linearly mapping each to the range of
[0, 1], (2) min-max norm, and (3) z-norm. Among these, z-norm yielded the best
results, so we select that as the normalization function, defined as: N(x) = x−x̄

S
where x̄ denotes the mean of samples and S denotes the standard deviation.

4 Evaluation

We now test the impact of multi-stage retrieval on quality, of memory-mapping
on RAM usage, and of both together on latency under varying traffic.

Methodology We use MS MARCO Passage Ranking development set that
contains 7K queries and 8.8M passages [1] as an “in-domain” benchmark for
ColBERTv2 and SPLADEv2 and report MRR@10, Recall@5 and Recall@50. To
test out-of-domain (OOD) generalization, we use Wikipedia Open-QA NQ-dev
with 8.7K queries and 21M passages [13,16] and LoTTE Search Lifestyle-dev with
417 queries and 269K passages [28]. These popular datasets differ dramatically
in size, with Wikipedia stressing RAM usage and LoTTE Lifestyle always fitting
in memory. Following [28], we report Success@5. We report the mean latency and
tail (95th and the 99th percentiles) latency observed by the concurrent clients in
our client-server architecture under varying degrees of server load. We measure
latency over the first 1K queries from each dataset, a sufficient size to saturate
the system under high load conditions. The number of queries per second (QPS)
is sampled using a Poisson distribution.

Choice of Hardware Since the ColBERTv2 baseline loads the entire index
in memory, its experiments require a machine with a high-capacity RAM. In
contrast, ColBERT-serve can run on significantly smaller machines. To highlight
this important benefit, we run experiments for our method on strictly smaller,
less powerful, cheaper machines rather than using the same machines as the
control experiments (namely, the full ColBERTv2 baseline). This demonstrates
that the proposed method has comparable quality and latency, while running on
significantly cheaper and resource-constrained machines. For MS MARCO and
Wikipedia, we use an AWS r6a.4xlarge instance for the control experiment,
and m5ad.xlarge and r6id.xlarge instances for SPLADEv2/MMAP experi-
ments, respectively. LoTTE Lifestyle’s index is small enough to fit in a memory-
restricted machine, so we run all experiments on a c5ad.xlarge instance. The
key machine specifications are provided in Table 1.

Table 1: AWS machine specifications
Control MMAP MARCO MMAP Wiki LoTTE

AWS machine r6a.4xlarge m5ad.xlarge r6id.xlarge c5ad.xlarge
Disk Size (GB) 950 150 237 150
CPU Count 16 4 4 4
Memory (GB) 128 16 (-88%) 32 (-75%) 8
Cost ($/month) 438 95 (-78%) 139 (-68%) 54



ColBERT-serve: Efficient Multi-Stage Memory-Mapped Scoring 5

Table 2: Results on MS MARCO, Wikipedia (NQ-dev) and LoTTE (Lifestyle-
dev) datasets. For SPLADEv2, we use the BT-SPLADE-L [14] checkpoint and
a PISA index compressed with a block_simdbp encoding, following [23], and
block of size 40 with a quantized scorer. For MS MARCO, we report development
results on Dev, on which we tune α for all datasets, and report evaluation results
on the held-out evaluation set used by the ColBERT authors [10,28].

Method MS MARCO Dev
MRR@10 R@5 R@50

ColBERTv2 39.51 56.62 86.30
SPLADEv2 38.00 54.70 85.04

Rerank 39.50 56.65 86.64
Hybrid (α = 0.3) 40.22 57.38 86.98

MS MARCO 5K Test
MRR@10 R@5 R@50

40.57 57.78 86.14
38.62 54.92 84.84
40.55 57.78 86.36
41.11 58.23 86.91

Method Wikipedia LoTTE
S@5 ∆ S@5 ∆

ColBERTv2 67.51 74.6
SPLADEv2 59.60 -11.7% 70.7 -5.6%

Rerank 66.29 -1.8% 74.3 -0.4%
Hybrid (α = 0.3) 65.78 -2.6% 74.8 +0.3%

Hybrid (optimal α) 66.34 -1.7% 75.3 +0.9%

Retrieval Quality Table 2 reports the quality of full ColBERTv2 scoring
against more efficient approaches based on SPLADEv2, Rerank, and Hybrid
scoring. We tune the parameter α for Hybrid on MS MARCO Dev and report
the results of this setting (i.e., α = 0.3) across all datasets. We can observe that
Hybrid scoring is the most effective method on MS MARCO and that it outper-
forms the SPLADEv2 model and Rerank across every dataset. On Wikipedia,
however, using a non-optimal α results in lower performance than Rerank. This
suggests that tuning α on a dedicated set of queries can be important to OOD
settings, though we leave this exploration for future work. Having confirmed
the quality of the Rerank and especially Hybrid methods, we now proceed to
evaluate the different efficiency dimensions.

Table 3: Retrieval quality of Hybrid with different α. When α = 0, the method
is equivalent to Rerank; when α = 1, it’s equivalent to SPLADEv2.

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Wiki S@5 66.29 66.34 66.21 65.78 65.33 64.76 63.80 63.01 62.12 61.04 59.60

LoTTE S@5 74.3 74.1 75.3 74.8 74.6 74.3 73.4 72.4 71.5 71.2 70.7
MARCO MRR@10 39.50 39.95 40.06 40.22 40.08 40.05 39.81 39.53 38.98 38.54 38.00

RAM Usage We measure memory usage for loading ColBERTv2 on MS
MARCO and Wikipedia by recording the difference in RSS memory before and



6 K. Huang et al.

(a) Wikipedia (b) MS MARCO (c) LoTTE

Fig. 1: P95 latency for Wikipedia, MS MARCO, and LoTTE. Note that full
ColBERTv2 on MS MARCO is evaluated on a higher-end and more expensive
machine (refer to Table 1) with a different physical processor, so its latency is
only for reference and is not directly comparable to the MMAP methods.

after loading. For the memory-mapped approaches, only the model checkpoint
and index metadata are loaded into memory, resulting in a substantial reduction
of RAM usage, by 90% for MS MARCO (from 23.4 GB to 2.3 GB) and 92% for
Wikipedia (from 98.3 GB to 8.2 GB). Our approach allows us to host the indexes
on machines with significantly lower RAM capacities, and reduces machine cost
by 78% for MS MARCO and 68% for Wikipedia, as shown in Table 1.

Latency on Varying Traffic Figure 1a compares the P95 latency across
methods on Wikipedia. The optimized PISA implementation of SPLADEv2,
using the efficiency-optimized BT-SPLADE-L model checkpoint [14], has the
lowest latency, although this comes at the steep reduction in quality, especially
out of domain, presented earlier. Next, although the Rerank/Hybrid methods
incur higher latency than SPLADE, they are markedly faster than the memory-
mapped ColBERTv2 method. The Rerank/Hybrid methods maintain low latency
with QPS up to 1/0.2 = 5 queries per second. When QPS exceeds this, the system
is saturated, leading to a sharper increase in latency due to queuing time. Note
that as shown in Table 1, full ColBERTv2 experiments were conducted on a
more expensive machine that fits the index in RAM, for reference. Despite this,
the Rerank/Hybrid methods still achieve lower latency than full ColBERTv2 on
QPS < 1/0.3 = 3.3, highlighting the value of multi-stage retrieval.

Figure 1b shows similar trends on MS MARCO, where our Rerank/Hybrid
systems greatly reduce the latency of memory-mapping ColBERTv2 across every
traffic load. Note that full ColBERTv2 is evaluated on a machine with a different
physical processor, so its latency is only for reference and is not directly com-
parable to the memory-mapped methods. Lastly, Figure 1c reports very similar
patterns for for LoTTE. Note that we do not apply memory mapping for LoTTE,
whose ColBERTv2 index fits easily in the RAM of our smallest machines. We
also report mean latency and P99 latency as additional metrics in Figure 2, with
similar trends as P95 latency.



ColBERT-serve: Efficient Multi-Stage Memory-Mapped Scoring 7

(a) Mean Latency, Wiki (b) Mean, MS MARCO (c) Mean, LoTTE

(d) P99 Latency, Wiki (e) P99, MS MARCO (f) P99, LoTTE

Fig. 2: Mean Latency and P99 Latency on Three Datasets.

5 Conclusion

We presented a highly practical serving system for ColBERT models that com-
bines memory-mapping, hybrid scoring, and support for concurrent requests. We
introduced an evaluation methodology for assessing the neural IR tradeoffs in
the concurrent, memory-constrained regime and demonstrated for the first time
to our knowledge that a ColBERT serving system can serve several queries per
second over large datasets on a server with as little as a few GBs of RAM. While
we expect that serving multi-vector models will continue to become faster and
cheaper in other ways, this work presents that a simple yet effective strategy to
balance a large number of deployment tradeoffs.

Acknowledgments. This work was partially supported by a Stanford HAI Hoffman-
Yee Research Grant and by IBM as a founding member of the Stanford Institute for
Human-Centered Artificial Intelligence (HAI), Oracle, Virtusa, and Cigna Healthcare.
This research was supported in part by affiliate members and other supporters of the
Stanford DAWN project—Facebook, Google, and VMware.

References

1. Bajaj, P., Campos, D., Craswell, N., Deng, L., Gao, J., Liu, X., Majumder, R., Mc-
Namara, A., Mitra, B., Nguyen, T., et al.: Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint arXiv:1611.09268 (2016)



8 K. Huang et al.

2. Basnet, S., Gou, J., Mallia, A., Suel, T.: Deeperimpact: Optimizing sparse learned
index structures. arXiv preprint arXiv:2405.17093 (2024)

3. Bergum, J.K.: Improving zero-shot ranking with vespa hybrid search - part two
(2023), https://blog.vespa.ai/improving-zero-shot-ranking-with-vespa-part-two/

4. Bernhardsson, E.: Spotify/annoy: Approximate nearest neighbors in c++/python
optimized for memory usage and loading/saving to disk, https://github.com/
spotify/annoy

5. Faysse, M., Sibille, H., Wu, T., Omrani, B., Viaud, G., Hudelot, C., Colombo, P.:
Colpali: Efficient document retrieval with vision language models (2024), https:
//arxiv.org/abs/2407.01449

6. Formal, T., Clinchant, S., Déjean, H., Lassance, C.: Splate: Sparse late interaction
retrieval. In: Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval. p. 2635–2640. SIGIR ’24,
Association for Computing Machinery, New York, NY, USA (2024). https://doi.
org/10.1145/3626772.3657968, https://doi.org/10.1145/3626772.3657968

7. Formal, T., Lassance, C., Piwowarski, B., Clinchant, S.: SPLADE v2: Sparse lexical
and expansion model for information retrieval. CoRR abs/2109.10086 (2021),
https://arxiv.org/abs/2109.10086

8. Hofstätter, S., Khattab, O., Althammer, S., Sertkan, M., Hanbury, A.: Introducing
neural bag of whole-words with colberter: Contextualized late interactions using
enhanced reduction. In: Proceedings of the 31st ACM International Conference
on Information & Knowledge Management. p. 737–747. CIKM ’22, Association
for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3511808.3557367, https://doi.org/10.1145/3511808.3557367

9. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. IEEE
Transactions on Big Data 7(3), 535–547 (2019)

10. Khattab, O., Zaharia, M.: Colbert: Efficient and effective passage search via con-
textualized late interaction over bert. In: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
p. 39–48. SIGIR ’20, Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3397271.3401075, https://doi.org/10.1145/
3397271.3401075

11. Kotek, J.: Jankotek/mapdb: Mapdb provides concurrent maps, sets and queues
backed by disk storage or off-heap-memory. it is a fast and easy to use embedded
java database engine., https://github.com/jankotek/mapdb/

12. Kulkarni, H., MacAvaney, S., Goharian, N., Frieder, O.: Lexically-accelerated
dense retrieval. In: Proceedings of the 46th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. p. 152–162. SIGIR
’23, Association for Computing Machinery, New York, NY, USA (2023). https:
//doi.org/10.1145/3539618.3591715, https://doi.org/10.1145/3539618.3591715

13. Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C.,
Epstein, D., Polosukhin, I., Devlin, J., Lee, K., Toutanova, K., Jones, L., Kelcey,
M., Chang, M.W., Dai, A.M., Uszkoreit, J., Le, Q., Petrov, S.: Natural Questions:
A Benchmark for Question Answering Research. Transactions of the Association
for Computational Linguistics 7, 453–466 (08 2019). https://doi.org/10.1162/tacl_
a_00276, https://doi.org/10.1162/tacl_a_00276

14. Lassance, C., Clinchant, S.: An efficiency study for splade models. In: Proceedings
of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval. p. 2220–2226. SIGIR ’22, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3477495.3531833,
https://doi.org/10.1145/3477495.3531833

https://blog.vespa.ai/improving-zero-shot-ranking-with-vespa-part-two/
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://arxiv.org/abs/2407.01449
https://arxiv.org/abs/2407.01449
https://doi.org/10.1145/3626772.3657968
https://doi.org/10.1145/3626772.3657968
https://doi.org/10.1145/3626772.3657968
https://doi.org/10.1145/3626772.3657968
https://doi.org/10.1145/3626772.3657968
https://arxiv.org/abs/2109.10086
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://github.com/jankotek/mapdb/
https://doi.org/10.1145/3539618.3591715
https://doi.org/10.1145/3539618.3591715
https://doi.org/10.1145/3539618.3591715
https://doi.org/10.1145/3539618.3591715
https://doi.org/10.1145/3539618.3591715
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1145/3477495.3531833
https://doi.org/10.1145/3477495.3531833
https://doi.org/10.1145/3477495.3531833


ColBERT-serve: Efficient Multi-Stage Memory-Mapped Scoring 9

15. Lee, J., Dai, Z., Duddu, S.M.K., Lei, T., Naim, I., Chang, M.W., Zhao, V.: Re-
thinking the role of token retrieval in multi-vector retrieval. Advances in Neural
Information Processing Systems 36 (2024)

16. Lee, K., Chang, M.W., Toutanova, K.: Latent retrieval for weakly supervised open
domain question answering. In: Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics. Association for Computational Linguistics
(2019)

17. Li, M., Lin, S.C., Oguz, B., Ghoshal, A., Lin, J., Mehdad, Y., Yih, W.t., Chen,
X.: Citadel: Conditional token interaction via dynamic lexical routing for efficient
and effective multi-vector retrieval. In: Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). pp.
11891–11907 (2023)

18. Lin, J., Ma, X.: A few brief notes on deepimpact, coil, and a conceptual framework
for information retrieval techniques. arXiv preprint arXiv:2106.14807 (2021)

19. MacAvaney, S., Tonellotto, N.: A reproducibility study of plaid. In: Proceedings
of the 47th International ACM SIGIR Conference on Research and Development
in Information Retrieval. p. 1411–1419. SIGIR ’24, Association for Computing
Machinery, New York, NY, USA (2024). https://doi.org/10.1145/3626772.3657856,
https://doi.org/10.1145/3626772.3657856

20. Mackenzie, J., Mallia, A., Moffat, A., Petri, M.: Accelerating learned sparse indexes
via term impact decomposition. In: Findings of the Association for Computational
Linguistics: EMNLP 2022. pp. 2830–2842 (2022)

21. Mallia, A., Khattab, O., Suel, T., Tonellotto, N.: Learning passage impacts for
inverted indexes. In: Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval. pp. 1723–1727 (2021)

22. Mallia, A., Siedlaczek, M., Mackenzie, J., Suel, T.: PISA: performant indexes and
search for academia. In: Proceedings of the Open-Source IR Replicability Chal-
lenge co-located with 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, OSIRRC@SIGIR 2019, Paris, France, July
25, 2019. pp. 50–56 (2019), http://ceur-ws.org/Vol-2409/docker08.pdf

23. Mallia, A., Siedlaczek, M., Suel, T.: An experimental study of index compression
and daat query processing methods. In: Advances in Information Retrieval: 41st
European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14–18,
2019, Proceedings, Part I 41. pp. 353–368. Springer (2019)

24. Mallia, A., Suel, T., Tonellotto, N.: Faster learned sparse retrieval with block-max
pruning. In: Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval. pp. 2411–2415 (2024)

25. Nardini, F.M., Rulli, C., Venturini, R.: Efficient multi-vector dense retrieval with
bit vectors. In: European Conference on Information Retrieval. pp. 3–17. Springer
(2024)

26. Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M.: Okapi
at trec-3. In: Overview of the Third Text REtrieval Conference (TREC-3). pp.
109–126. Gaithersburg, MD: NIST (January 1995), https://www.microsoft.com/
en-us/research/publication/okapi-at-trec-3/

27. Santhanam, K., Khattab, O., Potts, C., Zaharia, M.: Plaid: an efficient engine for
late interaction retrieval. In: Proceedings of the 31st ACM International Conference
on Information & Knowledge Management. pp. 1747–1756 (2022)

28. Santhanam, K., Khattab, O., Saad-Falcon, J., Potts, C., Zaharia, M.: ColBERTv2:
Effective and efficient retrieval via lightweight late interaction. In: Carpuat, M.,
de Marneffe, M.C., Meza Ruiz, I.V. (eds.) Proceedings of the 2022 Conference of the

https://doi.org/10.1145/3626772.3657856
https://doi.org/10.1145/3626772.3657856
https://doi.org/10.1145/3626772.3657856
http://ceur-ws.org/Vol-2409/docker08.pdf
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/


10 K. Huang et al.

North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. pp. 3715–3734. Association for Computational Linguistics,
Seattle, United States (Jul 2022). https://doi.org/10.18653/v1/2022.naacl-main.
272, https://aclanthology.org/2022.naacl-main.272

29. Santhanam, K., Saad-Falcon, J., Franz, M., Khattab, O., Sil, A., Florian, R., Sul-
tan, M.A., Roukos, S., Zaharia, M., Potts, C.: Moving beyond downstream task
accuracy for information retrieval benchmarking. In: Rogers, A., Boyd-Graber,
J., Okazaki, N. (eds.) Findings of the Association for Computational Linguis-
tics: ACL 2023. pp. 11613–11628. Association for Computational Linguistics,
Toronto, Canada (Jul 2023). https://doi.org/10.18653/v1/2023.findings-acl.738,
https://aclanthology.org/2023.findings-acl.738

30. Shrestha, S., Reddy, N., Li, Z.: Espn: Memory-efficient multi-vector information
retrieval. In: Proceedings of the 2024 ACM SIGPLAN International Symposium
on Memory Management. p. 95–107. ISMM 2024, Association for Computing Ma-
chinery, New York, NY, USA (2024). https://doi.org/10.1145/3652024.3665515,
https://doi.org/10.1145/3652024.3665515

31. Thakur, N., Reimers, N., Rücklé, A., Srivastava, A., Gurevych, I.: Beir: A heteroge-
nous benchmark for zero-shot evaluation of information retrieval models. arXiv
preprint arXiv:2104.08663 (2021)

32. Yu, P., Mallia, A., Petri, M.: Improved learned sparse retrieval with corpus-specific
vocabularies. In: European Conference on Information Retrieval. pp. 181–194.
Springer (2024)

33. Zhuang, S., Zuccon, G.: Fast passage re-ranking with contextualized exact term
matching and efficient passage expansion. arXiv preprint arXiv:2108.08513 (2021)

https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://aclanthology.org/2022.naacl-main.272
https://doi.org/10.18653/v1/2023.findings-acl.738
https://doi.org/10.18653/v1/2023.findings-acl.738
https://aclanthology.org/2023.findings-acl.738
https://doi.org/10.1145/3652024.3665515
https://doi.org/10.1145/3652024.3665515
https://doi.org/10.1145/3652024.3665515

	ColBERT-serve: Efficient Multi-Stage Memory-Mapped Scoring

