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Abstract. Multi-vector retrieval methods, exemplified by the ColBERT
architecture, have shown substantial promise for retrieval by providing
strong trade-offs in terms of retrieval latency and effectiveness. However,
they come at a high cost in terms of storage since a (potentially com-
pressed) vector needs to be stored for every token in the input collection.
To overcome this issue, we propose encoding documents to a fixed num-
ber of vectors, which are no longer necessarily tied to the input tokens.
Beyond reducing the storage costs, our approach has the advantage that
document representations become of a fixed size on disk, allowing for bet-
ter OS paging management. Through experiments using the MSMARCO
passage corpus and BEIR with the ColBERT-v2 architecture, a repre-
sentative multi-vector ranking model architecture, we find that passages
can be effectively encoded into a fixed number of vectors while retaining
most of the original effectiveness.
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1 Introduction

Pre-trained contextualized language models, such as BERT [7], learn semantic
embeddings from word contexts, enabling them to better capture the relevance of
documents with respect to the queries. Notably, they outperform classical rank-
ing approaches [16]. More specifically, cross-encoders concatenate a query and a
document texts, and feed them into BERT to compute the query document sim-
ilarity scores, while bi-encoders compute compact representations of documents
as real-valued vectors, both for queries and documents, and the query-document
similarity is computed using the cosine similarity or the inner product between
query and document embeddings.

Cross-encoder can be computationally expensive for estimating query-document
similarities due to the complexity of the underlying transformer neural net-
work [10, 11, 13, 27]. On the other side, bi-encoders are much more efficient
from a computational perspective, since all document embeddings can be pre-
computed offline and store in specialised vector indexes such as FAISS [12].
Instead of relying on a single vector per text as done by bi-encoders, multi-
representation systems such as [13] use a vector per token in a text, being able
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to capture more semantics than a single embedding. While ColBERT achieves
more effective results than single representations, it comes at the cost of higher
response times and memory usage [18].

ColBERTv2 [21] employs a compression method that leverages centroids to
represent passage embeddings more efficiently. This method records the ID of
the nearest centroid for each embedding and compresses the residuals—the dif-
ferences between the original embeddings and the centroids—using. This com-
pression strategy helps reduce the storage demands of multi-vector embeddings,
but makes retrieval significantly less efficient. To speed up the search latency
of ColBERTv2, PLAID [22] uses a centroid interaction mechanism and centroid
pruning to eliminate low-scoring passages early in the search process, thus re-
ducing response times significantly. This approach allows multi-vector retrieval
models to maintain retrieval quality while reducing retrieval latency.

XTR (ConteXtualized Token Retriever) [15] introduces a streamlined ap-
proach to multi-vector retrieval by emphasizing efficient token selection during
retrieval. Unlike ColBERT’s three-stage process (token retrieval, gathering, scor-
ing), XTR simplifies the retrieval pipeline by training the model to prioritize key
document tokens, thus only scoring based on these retrieved tokens. Another
recent approach worth mentioning is Static Pruning for Multi-Representation
Dense Retrieval [1], which addresses the storage challenges in multi-vector mod-
els like ColBERT by pruning embeddings for less impactful tokens. By adapting
static pruning techniques traditionally used in sparse indexes to embedding-
based indexes, this method reduces storage requirements while maintaining re-
trieval effectiveness In addition to pruning techniques, a recent advancement
named Token Pooling [4] aims to reduce the storage requirements of multi-vector
retrieval models like ColBERT. This approach clusters and pools similar token
embeddings at indexing time, substantially lowering vector counts without model
modifications or query-time processing.

Multi-vector models like ColBERT are also highly effective as reranking tech-
niques [17], where they refine the ranking of a candidate set generated by sim-
pler retrieval methods, such as BM25. In this setting, ColBERT’s pre-computed,
token-level document embeddings allow for efficient late interaction with the
query, balancing computational efficiency with strong retrieval performance.
This approach leverages the richness of multi-vector representations while main-
taining low latency, as document vectors can be cached across queries.

Recently, MUVERA (Multi-Vector Retrieval Algorithm) [8] introduced a
mechanism to bridge the gap between single-vector and multi-vector retrieval.
MUVERA employs Fixed Dimensional Encodings (FDEs) to approximate multi-
vector similarities, enabling the use of optimized Maximum Inner Product Search
(MIPS) solvers. This approach significantly enhances retrieval efficiency com-
pared to methods like PLAID. Although MUVERA achieves a good approx-
imation of PLAID using a single-vector representation and MIPS operations,
which makes its retrieval algorithm faster, it is able to do so only by employing
large high-dimensional vectors. This results in substantial memory consumption,
presenting a trade-off between retrieval speed and storage efficiency.
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In this paper, we propose a novel approach, ConstBERT, to reduce the stor-
age footprint of multi-vector retrieval by encoding each document with a fixed,
smaller set of learned embeddings. Instead of relying on token-level embeddings
across all document tokens, we introduce a pooling mechanism that projects
these token embeddings into a reduced set of document-level embeddings, each
capturing distinct semantic facets. This learned pooling reduces the number of
embeddings stored per document, achieving considerable space savings in the
index while retaining retrieval effectiveness. The fixed number of vectors per
document also eases the use of ConstBERT as a reranking method, simplifying
integration with initial retrieval systems and allowing efficient late interaction
with pre-computed document representations. This reduction is complementary
to other methods, such as dimensionality reduction, and enables efficient mem-
ory alignment with OS-level paging, ultimately improving both storage efficiency
and query processing speed.

2 ConstBERT: Multi-Vector Compression

Given a query q, our task is to retrieve relevant documents d from a corpus D by
ranking them with a relevance scoring function s(q, d). Queries and documents
are sequences of tokens from a given vocabulary. Each document d comprises M
tokens, and each query q comprises N tokens, with padding/masking tokens if
necessary. In a multi-representation dense IR system, any token is represented by
a k-dimensional real-valued vector, called embedding. Let q1, . . . , qN denote the
token embeddings for the query q, and d1, . . . , dM denote the token embeddings
for the document d. The relevance score s(q, d) between the query q and the
document d is computed with a late interaction mechanism:

s(q, d) =

N∑
i=1

max
j=1,...,M

qTi dj .

This late interaction mechanism sums up the contributions of the most rel-
evant document token for each query token. For each query token, the max
operator can be interpreted as an heuristic pooling mechanism over the token
embeddings of the document. Instead of relying on this heuristic pooling across
all document tokens, in this paper we propose a new learned pooling, where
instead of using the document embeddings d1, . . . , dM , i.e., an embedding per
document token, we use C < M new embeddings δ1, . . . , δC , that are learned
with an additional projection layer with parameters W ∈ RMk×Ck:

[δ1| · · · |δC ] = WT [d1| · · · |dM ].

This layer is learned end-to-end during training takes as input the token em-
beddings of a document computed by the multi-representation dense IR system,
and with a linear transformation projects them in a fixed number of embeddings,
of the same dimensions. In doing so, the new embeddings can be seen as different
single document-level embeddings, each one encoding some semantic facet of the
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document, given its token embeddings. The relevance score s(q, d) between the
query q and the document d is computed now as:

s(q, d) =

N∑
i=1

max
j=1,...,C

qTi δj .

As a result, the total number of embeddings per document to store in the embed-
ding index decreases by a factor M/C. This reduces the space required to store
the index on disk and in main memory, as well as the query processing time. This
space reduction is orthogonal to any further space reduction obtained, for ex-
ample, by reducing the number of dimensions k per embedding. Both reductions
can be further exploited to align the space occupancy per document to the mem-
ory page size, so to exploit more efficiently the underlying memory management
mechansisms provided by the operating system.

3 Experimental Results

In this section, we evaluate the performance and efficiency of our proposed fixed-
vector model, denoted as ConstBERTC , where C represents the number of fixed
embeddings per document. We compare it against the baseline, ColBERT, which
uses token-level embeddings for each document token.

3.1 Experimental Setup

Datasets & Queries. Our experimental framework utilizes the MSMARCO v1
passage corpus [2], which consists of approximately 8.8 million passages. To
assess both the effectiveness and efficiency of query processing, we benchmark our
approach against established methodologies using the MSMARCO Dev Queries,
as well as datasets from the TREC Deep Learning Tracks of 2019 and 2020 [5, 6].
Furthermore, we conduct evaluations on an additional 13 collections drawn from
the BEIR benchmark [23], allowing for a comprehensive analysis across datasets.

Metrics. To evaluate effectiveness, we employ the official metrics designated
for each query set: Mean Reciprocal Rank at cutoff 10 (MRR@10) for MS-
MARCO Dev queries and Normalized Discounted Cumulative Gain at cutoff 10
(NDCG@10) for both TREC queries and the BEIR benchmark. Additionally, we
report recall across varying cutoff thresholds for the MSMARCO experiments.
For efficiency analysis, we compute the Mean Response Time (MRT) for both
the Dev and TREC queries, measured in milliseconds. Additionally, we examine
the index sizes to demonstrate the substantial storage efficiency gains achieved
by our method.

Implementations. ConstBERT has been trained following the approach proposed
by Santhanam et al. [21]. ColBERTSP refers to the modification of ColBERT
proposed by Acquavia et al. [1], where token embeddings are statically pruned
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at indexing time. RetroMAE [26] is a single-representation dense retrieval model
for which we have used the official checkpoint4.

Platform. All experiments were carried out in memory on a Linux system, using a
single processing thread. The hardware configuration included dual 2.8 GHz Intel
Xeon CPUs and 256 GiB of RAM. For end-to-end retrieval experiments, we used
the official PLAID [17, 22] codebase5. In our two-stage retrieval experiments, we
used BMP [20] and efficient SPLADE [14] for candidate generation and then we
performed reranking using our ConstBERT32 model. We tested other learned
sparse models as first-stage retrieval methods, such as DeeperImpact [3, 19], and
obtained similar results; however, we did not include them in the main results
section due to limited space. Our code is written in Python and is available at
https://github.com/pisa-engine/ConstBERT.

3.2 Overall

Table 1 presents the results on MSMARCO with different configurations of Con-
stBERTC (varying the number of fixed embeddings per document C) and the
baseline ColBERT. As expected, ConstBERT’s performance improves with larger
token-level configurations, but at the cost of substantial increases in index size.
Our proposed ConstBERT32 model achieves comparable MRR on the develop-
ment set and NDCG@10 on both TREC 2019 and TREC 2020 benchmarks,
while using a fixed number of vectors per document, which allows for more ef-
ficient storage. ConstBERTC has a variety of tradeoffs compared to the existing
static pruning approach ColBERTSP . The performance of ColBERTSP lines on
the storage-effectiveness Pareto frontier set by various settings of C. On the one
hand, ConstBERTC offers advantages in flexibility since it can be tuned directly
to a target (and constant-space) representation. On the other hand, it requires
re-training learn the weights W , while ColBERTSP does not require retraining.

To evaluate the robustness of ConstBERTC across different retrieval tasks,
we further assess it on the BEIR benchmark (Table 2). The results highlight
that our model performs competitively with ColBERTon most tasks, achieving
comparable or even superior NDCG@10 scores while requiring much less storage.

A major advantage of our fixed-vector approach lies in its reduced storage
footprint.Unlike ColBERT, which scales linearly with the number of token em-
beddings per document, ConstBERTC maintains a consistent index size by using
a fixed number of embeddings. This efficiency extends across the BEIR datasets,
with our approach consistently reducing index sizes by over 50% compared to
ColBERTat equivalent effectiveness.

The reduced storage requirement of ConstBERTC also translates into lower
memory usage and faster retrieval times, as fewer embeddings need to be pro-
cessed per query-document pair. This efficiency gain is particularly advantageous
when using ConstBERTC as a reranking method, where computational speed is
crucial.
4 https://huggingface.co/Shitao/RetroMAE_MSMARCO_distill
5 https://github.com/stanford-futuredata/ColBERT
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Table 1. Effectiveness metrics and index space consumption on different query sets
for the MSMARCO benchmark.

Dev TREC 2019 TREC 2020

Index Size MRR Recall NDCG@10 Recall NDCG@10 Recall

50 200 1000 50 200 1000 50 200 1000

ColBERT 22G 39.99 86.52 94.47 97.34 74.64 45.64 68.88 83.11 73.99 53.80 72.64 82.70
ColBERTSP 14G 39.12 85.81 93.80 97.00 74.42 45.41 66.58 79.74 72.36 52.94 71.74 82.04

ConstBERT16 5G 37.84 84.04 91.74 94.11 71.15 41.38 61.31 72.62 73.75 48.98 65.80 73.89
ConstBERT32 11G 39.04 85.86 93.72 96.34 73.14 44.93 65.46 78.37 73.29 51.57 69.74 79.14
ConstBERT64 20G 39.15 86.27 94.06 96.90 74.29 46.07 66.97 79.64 73.47 52.85 71.98 81.62
ConstBERT128 40G 39.53 86.46 94.39 97.29 74.37 46.79 68.05 81.28 73.31 52.04 71.80 82.36

Table 2. NDCG@10 and index space consumption on 13 datasets of the BEIR bench-
mark.

arguana cfever dbpedia fever fiqa hotpot nf nq quora scidocs scifact covid touche

nDCG@10

ColBERT 0.452 0.163 0.434 0.751 0.338 0.679 0.329 0.554 0.846 0.154 0.638 0.705 0.261
(RetroMAE) 0.366 0.197 0.469 0.719 0.339 0.602 0.311 0.526 0.864 0.139 0.647 0.649 0.326
ConstBERT32 0.451 0.142 0.418 0.696 0.312 0.621 0.327 0.534 0.821 0.156 0.607 0.745 0.260
ConstBERT64 0.465 0.139 0.420 0.695 0.335 0.639 0.323 0.537 0.818 0.159 0.631 0.719 0.250

Index Size

ColBERT 49M 17G 11G 17G 232M 12G 23M 8.3G 0.3G 143M 32M 770M 1.5G
(RetroMAE) 26M 17G 15G 17G 170M 15G 11M 7.7G 1.5G 77M 16M 505M 2.3G
ConstBERT32 13M 6G 5G 6G 72M 6G 5M 3.2G 0.6G 33M 7M 212M 0.5G
ConstBERT64 22M 13G 11G 13G 138M 12G 10M 6.1G 1.2G 64M 15M 408M 0.9G

3.3 Reranking

In Table 3, we evaluate the performance of using ConstBERT as a reranking
model instead of employing it in an end-to-end retrieval system. Specifically,
we compare PLAID with a two-stage retrieval process incorporating ESPLADE
as the model used for candidate generation and our ConstBERT32. The results
show the retrieval effectiveness in terms of MRR and nDCG@10, and the av-
erage computational efficiency represented by MRT. Combining ESPLADE with
our lightweight ColBERT32 version balances both performance and efficiency.
This combination improves nDCG@10 close to that of the standalone ColBERT
while maintaining MRT below 6 ms, showcasing a practical trade-off. Const-
BERT32 is particularly advantageous not only due to its smaller index size but
also because all documents are embedded with the same number of vectors.
This uniformity simplifies implementation and allows for optimized memory us-
age through aligned memory reads, thereby leveraging the underlying memory
management mechanisms provided by the operating system more efficiently.
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Table 3. Effectiveness metrics and mean response time (MRT, in ms) for top-10 re-
trieval using PLAID vs. two-stage on Dev Queries, TREC 2019, and TREC 2020.

Dev TREC 2019 TREC 2020
MRR MRT nDCG@10 MRT nDCG@10 MRT

ColBERT 39.99 51.25 74.26 51.46 73.99 50.21
ESPLADE 38.75 3.07 71.33 3.13 71.14 3.20
+ ConstBERT32 39.52 4.95 74.38 5.50 74.33 5.23

4 Conclusion

Our experimental results demonstrate that the fixed-vector approach, Const-
BERT, effectively balances retrieval effectiveness and storage efficiency. By en-
coding each document with a fixed, smaller set of learned embeddings, our pro-
posal achieves competitive performance across TREC and BEIR benchmarks,
while substantially reducing index size and computational demands. This makes
it a scalable and practical solution for real-world information retrieval applica-
tions, where both storage efficiency and retrieval speed are essential.

There are various opportunities for future work in this space. For instance,
several studies related to the interpretability of late interaction models have
been conducted, given their alignment between tokens and their corresponding
representations (e.g., [9, 18, 25]). With our approach, this direct vector-token
alignment is no longer present. However, there still may be ways to interpret
the interactions, so it may be worth revisiting these studies. Another interesting
direction is the application of Pseudo-Relevance Feedback (PRF) with late in-
teraction models (e.g., [24]). Future studies could explore whether our approach
is complementary to PRF.
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