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Abstract. Reranking models are critical to enhancing the quality of re-
trieval systems by refining initial search results based on query relevance.
Among these, cross-encoders demonstrate higher effectiveness because of
their deep semantic understanding, achieved through transformer-based
architectures. However, their high computational demands pose signifi-
cant challenges for real-time applications and scalability.
This paper introduces E2Rank, a layer-wise reranking model that opti-
mizes both efficiency and effectiveness by leveraging intermediate trans-
former outputs, progressively applying deeper model layers to a nar-
rowed candidate set, to reduce computational costs with minimal im-
pact on quality. Our training approach, which includes model merging
and layerwise contrastive training, yields substantial gains in effective-
ness. Extensive experiments conducted on standard benchmarks demon-
strate that E2Rank achieves state-of-the-art performance, outperforming
existing rerankers in both effectiveness and computational efficiency.
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1 Introduction

Advancements in Retrieval-Augmented Generation (RAG) highlight the crucial
role of retrieval in reducing hallucinations and grounding generative models in
factual, relevant information [8, 15]. Effective retrieval reduces the risk of irrel-
evant outputs by providing only the most pertinent documents. In large-scale
retrieval systems, however, directly reranking all candidates is impractical, so
cascading architectures [1, 30] are used to filter out less relevant documents
early, allowing complex models to focus on a smaller, high-quality subset.

Cross-encoders have emerged as powerful tools for reranking a subset of rel-
evant candidates. A cross-encoder typically consists of a transformer-based ar-
chitecture, e.g. BERT [10], where pairs of queries and candidate documents are
jointly provided as input [33] producing relevance scores. This approach, while
highly effective, comes with significant computational costs, especially as model
sizes continue to increase. A key challenge in modern IR is balancing the effec-
tiveness of neural models with their latency and computational demands.
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Several techniques have been introduced to address this challenge, with no-
table improvements aimed at reducing latency without sacrificing performance.
One such approach, CROSS-JEM [23], improves the efficiency of cross-encoders
by jointly scoring multiple items in parallel, rather than processing each inde-
pendently, as is typical in standard cross-encoder architectures. FIRST [24] opti-
mizes reranking by reducing the number of output tokens required and employs
strategies such as truncated ranked lists and top-down partitioning to further
enhance efficiency. Additionally, some methods leverage adapters within trans-
former models [22] to minimize fine-tuning costs and boost efficiency. For real-
time ranking, online production systems often employ sparse neural networks
like MEB [4], which enable efficient ranking of thousands of items simultane-
ously. Late-interaction models, such as ColBERT [25] and TwinBERT [17], offer
another solution by applying a late-interaction layer over query-item embeddings
and pre-computed document embeddings, significantly reducing computational
costs while preserving ranking quality. Furthermore, techniques such as knowl-
edge distillation have been used to compress large language models, such as
distilling RankGPT into cross-encoders for passage reranking [26], which dra-
matically lowers inference latency without compromising ranking effectiveness.

Very recently, layerwise reranking3 has appeared as an implementation pro-
posal rather than a fully researched methodology formally documented in the
literature. This method makes use of only a subset of layers from the full trans-
former architecture to perform reranking, thus reducing computation costs.

We propose a novel approach that addresses both the cost and performance
issues in current methods. This work provides the following contributions:

– We present an overview of the current reranking landscape and introduce a
comprehensive benchmark that includes standard datasets and both open-
source and proprietary models.

– We introduce a training strategy that combines model merging with layer-
wise contrastive training, yielding substantial improvements.

– We present a low-parameter state-of-the-art reranker that outperforms its
larger competitors across several in-domain and out-of-domain benchmarks.

– We propose a layerwise reranking strategy with adjustable efficiency-effectiveness
trade-offs, allowing to operate across various efficiency requirements.4

2 E2Rank

Architecture. The proposed reranker employs a transformer-based cross-encoder
architecture to evaluate the relevance between a query and a document by pro-
ducing a similarity score. Specifically, the model takes both the query and the
document as input, processes them jointly with the same transformer layers,
and outputs a final score in the form of a logit through a projection layer. In
our implementation, to maximize effectiveness, we use the DeBERTa v3 large
3 https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise
4 The code is available at: https://github.com/caesar-one/e2rank

https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise
https://github.com/caesar-one/e2rank
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model as the base encoder, selected for its disentangled attention mechanism and
advanced pre-training. The disentangled attention allows the model to indepen-
dently focus on content and positional information, which is crucial for capturing
fine-grained relationships in query-document pairs. Additionally, DeBERTa v3
is trained with an ELECTRA-style objective, which enables the model to pre-
dict token replacements rather than just masked tokens. This approach yields
richer representations, contributing to stronger retrieval performance and a more
effective reranker overall.
Training Objective. We modify the above architecture to enable reranking
scores to be computed at each individual layer of the transformer. This flexibil-
ity offers the advantage of leveraging intermediate representations that capture
relevant features more efficiently. We propose a training objective that incor-
porates layer-wise supervision and distribution alignment between intermediate
layers and the final layer of the reranker model.

Let q be a query, and D = {d+0 , d
−
1 , . . . , d

−
N} be a set of documents asso-

ciated with q, where d+0 is the relevant (positive) document and {d−i } are the
N non-relevant (negative) documents. The model computes relevance scores for
each document at each layer l ∈ L, producing logits ŝl ∈ RN+1 for the docu-
ments in D. These logits are converted to probabilities via the softmax function
p̂l = softmax(̂sl). The training objective consists of two components:
First, we apply a cross-entropy loss at each layer l to encourage them to assign
higher scores to relevant documents:

Llayerwise =
1

|L|

|L|∑
l=1

CE(p̂l, ŷ), (1)

where p̂l is the probability distribution at the l-th layer, and ŷ is the target one,
defined as ŷ = [1, 0, . . . , 0], indicating that the first document d+0 is relevant.

Then, to encourage output distributions of intermediate layers to align with
the final layer’s distribution, we use a Kullback-Leibler Divergence (KL) loss:

Ldivergence =
1

|L| − 1

|L|−1∑
l=1

KL(p̂l, p̂|L|), (2)

where p̂l and p̂|L| are the probability distributions for layer l (student) and the
final layer (teacher), respectively. The total loss is the sum of the two losses.

We found that using multiple hard negatives – challenging negative samples
that are somewhat similar to the anchor but are not true positives – substantially
improves training, helping the model generalize more robustly. This well studied
technique [13, 32, 34] enhances performance by enabling the model to better
distinguish between similar but incorrect examples.
Model Merging. Model merging refers to combining the weights of multiple
models trained independently, typically on different datasets or with different hy-
perparameter configurations, to improve robustness and accuracy. In our work,
we merge two checkpoints – trained on MSMARCO and QA datasets – using
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linear averaging of their weights, a method that enables us to benefit from the
strengths of both models without increasing memory or inference costs, unlike
traditional ensembles. This approach ensures that the merged model retains per-
formance improvements while remaining efficient in terms of resource usage [31].
Multi-step reranking. In Algorithm 1, we propose a multi-step cascading
reranking approach that improves model efficiency by gradually applying more
transformer layers as the document set is refined. Initially, a limited number of
layers generate approximate ranking scores for a broad set of candidates, acting
as a coarse filter. In each subsequent step, as the candidate set narrows, the
model progressively uses more layers to capture complex patterns, refining the
ranking with each pass while minimizing computational costs, and ensuring that
the whole model is used only on the most promising documents.

Figure 1 depicts this process, showing how the number of transformer layers
and candidate documents change across steps. Starting with a high document
count and few layers, the method results in a deeper model usage only on a small,
more relevant subset of documents, balancing computational load with ranking
quality. Unlike a pipeline composed of multiple models that increase in size, this
method benefits from using the same model throughout the process, enabling
the reuse of intermediate representations. This reduces redundant computations
and ensures that each step builds upon the prior, leading to both efficiency gains.

Algorithm 1: Layer-wise Reranking Algorithm
1 Function LayerwiseRerank(ids, hidden_states, ranking_layers)
2 ranking_layer, k← Pop(ranking_layers)
3 for l← 1 to TotalLayers do
4 hidden_states← ApplyLayer(l, hidden_states)
5 if l = ranking_layer then
6 logits← Classify(hidden_states)
7 doc_ids, hidden_states← TopK(k, logits, ids, hidden_states)
8 ranking_layer, k← Pop(ranking_layers)
9 return ids

3 Experiments

Dataset and query logs. Our evaluation uses test collections from the TREC
Deep Learning Tracks (2019 and 2020) [6, 7] based on the MS MARCO v1
passage corpus [20]. For the BEIR benchmark [27], we focused on 12 datasets,
excluding the four that are not publicly available to ensure reproducibility. We
also excluded MS MARCO, as it is evaluated separately, and ArguAna, since its
task of finding counter-arguments to the query contrasts with the purpose of a
reranker. In all experiments, we rerank 200 candidates retrieved by SPLADE-
v3 [14] leveraging BMP [19] as a retrieval algorithm. We also tested candidates
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Fig. 1. A comparison of cascading reranking highlighting computation reuse in E2Rank.

from diverse retrievers, dense, sparse, and multi-vector models [2, 18, 25, 29],
yielding similar results, but omitted them from the main experiments for brevity.

Competing Methods. We employ a diverse set of reranker models with distinct
architectures and goals. The Naver model, based on DeBERTa-v3 large [11] by
Naver Labs Europe5 [9], and the BGE family from BAAI [3, 16] include BGELayer

(MiniCPM-based with layer selection) and BGEM3 (M3-based lightweight model).
We also test T5-based models MonoT5Base and MonoT53B [21] fine-tuned on MS
MARCO. Other models include JinaAI’s JinaAI[12], Mixedbread6 from Mixed-
bread, Cohere’s CohereEn and CohereMulti[5], Voyagev2 by VoyageAI [28], and
Google’s VertexAI7. Our models, E2RankMarco, E2RankQA, and E2Rank, are fine-
tuned on MS MARCO, QA datasets, and their merged version. All models are
evaluated on an NVIDIA A100 GPU with a standardized batch size of 8 and
context length of 512. To ensure fairness, we avoid engineering optimizations like
flash attention, CUDA kernels, and model compilation.

Accuracy. Our first experiment aims to show the effectiveness improvements
of E2Rank. Table 1 shows the results for several reranking models on the TREC
datasets. A weighted average of the NDCG@10 for the two query logs is com-
puted as well as a mean response time (MRT) expressed in milliseconds per
document. E2Rank is the fastest model, due to its low number of parameters.
MonoT5Base is the only model with fewer parameters, but it is slightly slower
due to the more complex encoder-decoder architecture. Some of the proprietary
models are tested though their official remote API and we were not able to col-
lect latencies in a comparable way. In terms of retrieval quality, the weighted
average NDCG@10 measured for the two TREC tracks shows that E2Rankis
superior than all the competitors, although with a small margin.

5 https://huggingface.co/naver/trecdl22-crossencoder-debertav3
6 https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1
7 https://cloud.google.com/generative-ai-app-builder/docs/ranking

https://huggingface.co/naver/trecdl22-crossencoder-debertav3
https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1
https://cloud.google.com/generative-ai-app-builder/docs/ranking
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Table 1. Effectiveness and mean response time (MRT, in ms/doc), on MSMARCO
using the TREC 2019 and TREC 2020 queries. Avg refers to the weighted average.

Model TREC 2019 TREC 2020 Avg Model Size MRT

NDCG@10 # params ms/doc
O

SS
Naver 77.5 75.5 76.4 304M 8.2
BGELayer 77.0 76.1 76.5 2.4B 10.5
BGEM3 76.0 75.1 75.5 560M 7.6
MonoT5Base 71.2 68.0 69.4 220M 4.1
MonoT53B 74.2 75.7 75.0 3B 29.8

P
ro

pr
ie

ta
ry

Mixedbread 75.4 73.1 74.1 440M 8.1
JinaAI 75.1 76.2 75.7 560M –
CohereEn 73.5 71.2 72.2 – –
CohereMulti 76.5 73.7 74.9 – –
Cohere3.5 75.2 72.7 73.8 – –
Voyagev2 76.1 76.5 76.3 – –
VertexAI 65.1 64.7 64.9 – –

O
ur

s E2RankMarco 76.7 75.9 76.3 304M 8.2
E2RankQA 72.8 70.5 71.5 304M 8.2
E2Rank 76.5 76.7 76.6 304M 8.2

Table 2 shows the results for several reranking models on the BEIR datasets.
E2Rank is the best performing model, reaching the highest average NDCG@10
across all datasets. E2Rank outperforms the other models by achieving the best
performance on 4 out of the 12 datasets, the highest number in our evaluation.

Table 2. Effectiveness as NDCG@10 on 12 datasets of BEIR and their average.

Model c-fever dbpedia fever fiqa hotpotqa nfcorpus nq quora scidocs scifact touche t-covid Avg
Naver 26.6 48.9 87.2 50.1 75.2 37.7 66.0 84.1 19.7 77.1 33.3 89.2 57.9
BGEM3 35.6 47.8 89.8 42.6 82.4 33.5 69.1 89.1 17.0 73.4 34.6 82.7 58.1
JinaAI 31.6 49.4 92.1 44.8 79.6 37.1 67.1 87.7 19.5 76.8 33.3 76.6 58.0
CohereEn 29.3 45.6 88.0 45.6 76.4 37.2 62.2 83.7 19.2 76.7 27.9 86.6 56.5
CohereMulti 24.6 45.0 87.3 40.8 73.7 33.7 62.6 76.5 17.1 74.1 37.6 80.6 54.5
Cohere3.5 34.3 49.3 90.7 47.4 79.7 35.1 69.9 87.2 17.8 77.3 33.5 84.8 58.9
Voyagev2 24.2 48.8 87.6 53.2 80.8 37.7 69.9 85.9 18.7 76.3 25.1 84.7 57.7
VertexAI 23.5 36.6 55.9 36.8 69.5 31.4 52.9 66.8 15.8 72.7 27.3 66.3 46.3
E2RankMarco 29.9 50.2 87.5 50.7 75.9 39.1 66.3 83.1 19.7 76.7 34.7 87.6 58.5
E2RankQA 40.8 47.7 90.5 45.5 83.4 34.7 72.2 79.9 19.3 77.1 26.6 78.3 58.0
E2Rank 34.3 52.1 89.2 51.1 80.5 38.8 69.9 83.7 20.1 78.3 33.8 87.7 59.9

Efficiency. In this experiment, we evaluate the efficiency-effectiveness trade-offs
for the only two models that allow it, BGELayer and E2Rank, as shown in Figure 2.
For BGELayer, the model is configured with different layer cutoffs (16, 24, 32,
and 40 layers) to explore varying levels of computational cost. As expected,
using fewer layers results in lower latency, but with a trade-off in effectiveness,
indicated by a decrease in NDCG@10 scores. The performance improves as more
layers are included, but at the expense of increased latency. In contrast, E2Rank
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is evaluated with three configurations. First, we test it with all 24 layers, then
with only the first 8 layers, and finally with a multi-step reranking strategy. In
the multi-step approach, all documents are initially reranked using just 8 layers,
then the top candidates are progressively reranked using 16 and finally 24 layers.
This strategy enables E2Rank to achieve a balanced reduction in latency while
maintaining quality by concentrating computational resources on fewer, more
relevant documents. The results place E2Rank on the Pareto frontier, indicating
that it achieves better efficiency-effectiveness trade-offs compared to BGELayer.
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Latency [ms/doc]
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Fig. 2. Effectiveness-efficiency trade-offs for BGELayer and E2Rank on the weighted
average between TREC 2019 and TREC 2020.

4 Conclusion

We introduced E2Rank, a novel layer-wise reranking model that balances effi-
ciency and effectiveness. Our experiments show that E2Rank achieves state-of-
the-art performance across a range of datasets while lowering computational
costs compared to existing models. Our layer-wise reranking strategy enables
progressive result refine offering adjustable efficiency-effectiveness trade-offs.
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